

INVERTRONIC compact Cost Saving Power Protection Availability

Mains failure and mains disturbances may cause serious problems

More and more mission critical loads for industrial and commercial applications require a smooth and uninterrupted supply of electricity.

On the public network, major loads as well as lightning strikes, generate dynamic over voltages, under voltages, sags/brownouts and transients.

Invertronic *compact* inverter systems ensure continuous power protection availability

Benning's new advanced INVERTRONIC *compact* single phase inverter systems provide continuous and high quality AC power for mission critical loads in the industrial and commercial market place.

The INVERTRONIC *compact* inverter modules offer a very flexible platform to design compact AC/AC power solutions in combination with the modular rectifier range 3000I and 12000I.

(see pages 5 & 6 for examples)

Voltage Phenomenon	Time	e.g.
-	> 10 ms	~
1. Outage - blackouts	> 10 1115	<u>'</u>
2. Sags/brownouts	< 16 ms	M
3. Dynamic overvoltage	416 ms	M
4. Undervoltage	continuous	<u>M</u>
5. Overvoltage	continuous	M
6. Transients (Surge)	< 4 ms	M
7. Lightning	sporadic	Nr
8. Voltage distortion HF (Burst)	periodically	Ŵ
9. Voltage harmonics	continuous	M
10. Frequency variations	sporadic	NN

Fig. 2: 19" Sub-rack with 5 INVERTRONIC compact inverters

Malfunctions in the public network (see table of mains disturbances above) may cause hardware failure, disruption of critical loads, unplanned production downtime or loss of communication.

Table of main disturbances

Inverter systems are often the perfect choice to supply reliable and conditioned AC power to mission critical applications.

The INVERTRONIC *compact* range consists of the following system components:

1.19"sub-rack

The 19" sub-rack is designed to accommodate the INVERTRONIC modules and can be integrated into 19" floor standing or wall mounted cabinets.

- The following sub-rack versions are available:
- Sub-rack with back plane connections for up to 3 inverter modules, one static bypass module and a manual bypass. (fig. 1)
- 2. Sub-rack with back plane connections for up to 5 inverter modules. (fig. 2)

INVERTRONIC compact

Modular Design, Multiple System Integration

2. Parallel operating Inverter modules

INVERTRONIC inverter modules are available for use with DC input voltages of 24, 48-60, 110V or 220V. The standard AC output voltage is 230V, but 220V and 240V are selectable. Each inverter module can supply 1-2.5kVA rated output power.

The hot-plug design of the inverter modules together with the dimensions of 1/5 19 inch width and 3U height allows the accommodation into 19 inch 3U sub-racks.

3. Static bypass switch

The static bypass switch increases the availability of the inverter system and provides security during overload or short circuit.

The bypass switch transfers the load to the mains if the inverter output deviates outside the acceptable tolerances for both, voltage and frequency, caused by short circuit, overload, or inverter failure.

Automatic transfer of the load back to the inverter is made after the inverter output has returned to within tolerance. The transfer time is less than 2ms.

The static bypass has the same dimensions as the inverter modules and can be integrated into the 19 inch sub-rack. (Fig.5).

4. Manual bypass switch

The additional integrated manual bypass switch is located beside the static bypass switch and allows the manual transfer of the load to the mains or to the inverter output. This switch allows the inverter modules and the static bypass module to be bypassed for service reasons.

Block diagram of the modular construction of INVERTRONIC compact inverter systems

Fig. 3 (above): Sub-rack with 3 inverters, static bypass switch and manual bypass switch

Fig. 4: Sub-rack with 5 inverters, without bypass switch

INVERTRONIC *compact* Key Features:

- Advanced inverter technology with DSP (digital signal processing) and IGBT/MOSFET semiconductors
- Scaleable and flexible single phase inverter system with hot -plug inverter modules for parallel operation
- Short MTTR (Mean Time To Repair) Replacement of modules without any load break
- The combination with Benning's modular rectifier range, allows the realisation of very compact AC-AC systems
- High efficiency even at partial loads, means low operating costs
- N+1 redundant configuration ensures continuous availability
- Excellent dynamic response
- High power density with low volume and weight

norwatt@norwatt.es

INVERTRONIC compact Monitoring & Remote Management with MCU 2500

Figs 7 & 8, show different sizes of cabinets with sub-racks for inverters only and a combination of inverters and rectifiers.

The integration of battery and load fuses/breakers is also possible.

Monitoring system MCU 2500

The Monitoring system MCU 2500 allows local or remote operation of the INVERTRONIC *compact* systems.

The display and operation unit mounted on the front door of the system cabinet consists of liquid crystal display, 17 LED's and 4 push buttons and allows local operation of the power system.

Remote control and monitoring is possible using modem, Ethernet, Web, SNMP, MODbus or Profibus. (Fig10)

AC-Power Supply

TCP-IP

www.norwatt.es

TCP-IP Modem Modem - RS232 Serial communication (UPS protocol) ----- TCP-IP Protocol, complete

-voltage lov

LED - Test

Fig. 9: Monitoring and control unit

Fig. 10: Monitoring concept of the MCU 2500

data set is transferred

Web-Browser: system values and configuration

Graphical user interface

for all Windows Oss

Modem

Fig. 8: Inverter- rectifier cabinet with: 3 inverter modules, static and manual bypass Total AC output power 4.5kVA 5 rectifier modules output voltage 220V DC, output current 50A DC

Technical Specification INVERTRONIC compact

7

Technical Specification

					1		
FLA (A3		0.0	0.0	A A	5.5		
		an an anna ann an an an			5.5		
			1.4.0 1.1.4.0 1.1.0		12.5		
[KVA]					7.5		
	1	2	3	4	5		
[%]							
[%]			< 5 eff.	1. A			
[V]	220/230/240 1-nh N PF (selectable)						
	± 1						
	\leq 10 at 100 % load step						
	≤ 25						
		100 % permit	ted (beware of s	starting current)			
[%]		1.35 x l	- nom for appro	x 60 sec.			
[%]	2.0 x I - nom for 4 sec., after that 1.2 x I - nom for 60 sec., then switch off						
[A]		2.5 x I - nom for 4 sec.					
[Hz]		50 (60) \pm 0.1 % oscillator or mains synchronised					
[Hz]	-	50 (ctable)			
			on or or or other		1 50001		
[%]	\leq 2 with line	ear load, ≤ 5 with	th non linear loa	d according to Ef	N 50091-1-1		
[%]		and the second	≥ 91.5				
[kVA]			23 (at 230 V AC	;)			
[[V]]		18 tr	80 V and 90 to	275 V			
		max. +5: In		isation range			
[[A]]			100				
				C			
12000 Y							
[%]			the second se				
[%] [msec]	tvp.		120 for 10 min		46-4		
[%] [msec]	typ.	2 in accordance	120 for 10 min with DIN VDE 0 rter/mains prior	558 Part 5, IEC 1 rityng			
	typ.	2 in accordance	120 for 10 min with DIN VDE 0 rter/mains prior	558 Part 5, IEC 1			
		2 in accordance Inve	120 for 10 min with DIN VDE 0 rter/mains prior (*2: These adju	558 Part 5, IEC 1 rityng istments can be made	e directly on the u		
[msec]		2 in accordance Inve	120 for 10 min with DIN VDE 0 rter/mains prio (*2: These adju 8 (24-60 V) class	558 Part 5, IEC 1 rityng	e directly on the u		
	in accord	2 in accordance Inve ding with class E	120 for 10 min with DIN VDE 0 rter/mains prio (*2: These adju 8 (24-60 V) class approx 65	558 Part 5, IEC 1 rityng Istments can be made A (110+220 V) E	e directly on the u		
[msec] [dB(A)]	in accord	2 in accordance Inve ding with class E	120 for 10 min with DIN VDE 0 rter/mains prior (*2: These adju 8 (24-60 V) class approx 65 th speed control	558 Part 5, IEC 1 rityng istments can be made	e directly on the u		
[msec] [dB(A)] [°C]	in accord	2 in accordance Inve ding with class E	120 for 10 min with DIN VDE 0 rter/mains prior (*2: These adju 8 (24-60 V) class approx 65 th speed control -33 to +55	558 Part 5, IEC 1 rityng Istments can be made A (110+220 V) E	e directly on the u		
[msec] [dB (A)] [°C] [°C]	in accord	2 in accordance Inve ling with class E prced cooling wi	120 for 10 min with DIN VDE 0 rter/mains prior (*2: These adju 8 (24-60 V) class approx 65 th speed control -33 to +55 -25 to +70	558 Part 5, IEC 1 rityng istments can be made a A (110+220 V) E led fans at air inl	e directly on the u		
[msec] [dB (A)] [°C] [°C] [%]	in accord	2 in accordance Inve ling with class E prced cooling wi 5 – 99	120 for 10 min with DIN VDE 0 rter/mains prior (*2: These adju 8 (24-60 V) class approx 65 th speed control -33 to +55 -25 to +70 5 without conde	558 Part 5, IEC 1 rityng istments can be made a A (110+220 V) E led fans at air inl nsation	e directly on the u EN 55022 et		
[msec] [dB (A)] [°C] [°C]	in accord	2 in accordance Inve ling with class E prced cooling wi 5 – 9: 0 1000 m above	120 for 10 min with DIN VDE 0 rter/mains prior (*2: These adju 8 (24-60 V) class approx 65 th speed control -33 to +55 -25 to +70 5 without conde sea level withou	558 Part 5, IEC 1 rityng istments can be made a A (110+220 V) E led fans at air inl nsation ut power reductio	e directly on the u EN 55022 et		
[msec] [dB (A)] [°C] [°C] [%]	in accord	2 in accordance Inve ding with class E prced cooling wi 5 – 9: 0 1000 m above IP 20 in a	120 for 10 min with DIN VDE 0 rter/mains prior (*2: These adju 2 (24-60 V) class approx 65 th speed control -33 to +55 -25 to +70 5 without conde sea level withou ccordance with	558 Part 5, IEC 1 rityng istments can be made A (110+220 V) E led fans at air inl nsation ut power reductio DIN 40050	e directly on the u EN 55022 et		
[msec] [dB (A)] [°C] [°C] [%]	in accord	2 in accordance Inve ling with class E prced cooling wi 5 – 9: 0 1000 m above IP 20 in a RAL 7035, str	120 for 10 min with DIN VDE 0 rter/mains prior (*2: These adju 8 (24-60 V) class approx 65 th speed control -33 to +55 -25 to +70 5 without conde sea level withou	558 Part 5, IEC 1 rityng istments can be made A (110+220 V) E led fans at air inl nsation ut power reductio DIN 40050 nish (frontplate)	e directly on the u EN 55022 et		
[msec] [dB (A)] [°C] [°C] [%]	in accord	2 in accordance Inve ling with class E prced cooling wi 5 – 9: 0 1000 m above IP 20 in a RAL 7035, str	120 for 10 min with DIN VDE 0 rter/mains prior (*2: These adju 2 (24-60 V) class approx 65 th speed control -33 to +55 -25 to +70 5 without conde sea level withou ccordance with uctured paint fir	558 Part 5, IEC 1 rityng istments can be made A (110+220 V) E led fans at air inl nsation ut power reductio DIN 40050 nish (frontplate)	e directly on the u EN 55022 et		
[msec] [dB (A)] [°C] [°C] [%]	in accord	2 in accordance Inve ling with class E prced cooling wi 5 – 9: 0 1000 m above IP 20 in a RAL 7035, str	120 for 10 min with DIN VDE 0 rter/mains prior (*2: These adju 2 (24-60 V) class approx 65 th speed control -33 to +55 -25 to +70 5 without conde sea level withou ccordance with uctured paint fir	558 Part 5, IEC 1 rityng istments can be made A (110+220 V) E led fans at air inl nsation ut power reductio DIN 40050 nish (frontplate)	e directly on the u EN 55022 et		
[msec] [dB (A)] [°C] [°C] [%]	in accord	2 in accordance Inve ling with class E prced cooling wi 5 – 9: 0 1000 m above IP 20 in a RAL 7035, str	120 for 10 min with DIN VDE 0 rter/mains prior (*2: These adju 2 (24-60 V) class approx 65 th speed control -33 to +55 -25 to +70 5 without conde sea level withou ccordance with uctured paint fir	558 Part 5, IEC 1 rityng istments can be made A (110+220 V) E led fans at air inl nsation ut power reductio DIN 40050 nish (frontplate)	e directly on the u EN 55022 et		
	[kVA] [kVA] [kVA] [kVA] [w] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%		[kVA] 1.1 2.2 [kVA] 2.5 5 [kVA] 1.5 3.0 1 2 [%] 1 2 [%] $(1 - 220/230/24)$ [%] ≤ 1 [%] $2.0 \times 1 - nom for 4 sec., after [A] 2.5 [Hz] 50 (60) \pm 0.1 \% [Hz] 50 (60) \pm 0.1 \% [%] \leq 2 with linear load, \leq 5 with [%] \leq 2 with linear load, \leq 5 with [%] max. \pm 5; ln [%] max. \pm 15 mains o [Hz] (1 - 2) [%] max. \pm 15 mains o [Hz] (1 - 2) [%] \pm 5 (\pm 0) $	[kVA] 1.1 2.2 3.3 [kVA] 2.5 5 7.5 [kVA] 1.5 3.0 4.5 1 2 3 [%] -15 to +20 [%] -15 to +20 [%] -15 to +20 [%] -15 to +20 [%] <5 eff.	[kVA] 1.1 2.2 3.3 4.4 [kVA] 2.5 5 7.5 10 [kVA] 1.5 3.0 4.5 6.0 1 2 3 4 [%] -15 to +20 [%] [%] -15 to +20 [%] [%] -15 to +20 [%] [%] -10 at 100 % load step ±1 [%] ≤ 10 at 100 % load step [msec] ≤ 25 100 % permitted (beware of starting current) [%] 1.35 x l - nom for approx 60 sec. th [%] 1.35 x l - nom for 4 sec. th - nom for 4 sec. [%] 2.0 x l - nom for 4 sec., after that 1.2 x l - nom for 60 sec., th th - 2.5 x l - nom for 4 sec. [%] 2.5 x l - nom for 4 sec. th - 2.5 x l - nom for 4 sec. [Hz] 50 (60) ± 5 % (selectable) sinusoidal [%] ≥ 2 with linear load, ≤ 5 with non linear load according to EI [%] ≥ 2 with linear load, ≤ 5 with non linear load according to EI [%] ≥ 2 with linear load, ≤ 5 with a no linear load according to EI		